Common mitochondrial DNA mutations generated through DNA-mediated charge transport.
نویسندگان
چکیده
Mutation sites that arise in human mitochondrial DNA as a result of oxidation by a rhodium photooxidant have been identified. HeLa cells were incubated with [Rh(phi)(2)bpy]Cl(3) (phi is 9,10-phenanthrenequinone diimine), an intercalating photooxidant, to allow the complex to enter the cell and bind mitochondrial DNA. Photoexcitation of DNA-bound [Rh(phi)(2)bpy](3+) can promote the oxidation of guanine from a distance through DNA-mediated charge transport. After two rounds of photolysis and growth of cells incubated with the rhodium complex, DNA mutations in a portion of the mitochondrial genome were assessed via manual sequencing. The mutational pattern is consistent with dG to dT transversions in the repetitive guanine tracts. Significantly, the mutational pattern found overlaps oxidative damage hot spots seen previously. These mutations are found within conserved sequence block II, a critical regulatory element involved in DNA replication, and these have been identified as sites of low oxidation potential to which oxidative damage is funneled. On the basis of this mutational analysis and its correspondence to sites of long-range oxidative damage, we infer a critical role for DNA charge transport in generating these mutations and, thus, in regulating mitochondrial DNA replication under oxidative stress.
منابع مشابه
Oxidation by DNA charge transport damages conserved sequence block II, a regulatory element in mitochondrial DNA.
Sites of oxidative damage in mitochondrial DNA have been identified on the basis of DNA-mediated charge transport. Our goal is to understand which sites in mitochondrial DNA are prone to oxidation at long range and whether such oxidative damage correlates with cancerous transformation. Here we show that a primer extension reaction can be used to monitor directly oxidative damage to authentic mi...
متن کاملThe mitochondrial DNA mutations associated with cardiac arrhythmia investigated in an LQTS family
Objective(s): As mitochondrial oxidative stress is probably entailed in ATP production, a candidate modifier factor for the long QT syndrome (LQTS) could be mitochondrial DNA (mtDNA). It has been notified that ion channels' activities in cardiomyocytes are sensitive to the ATP level. Materials and Methods: The sample of the research was an Iranian family with LQTS for mutations by PCR-SSCP and...
متن کاملMitochondrial DNA Mutations, Pathogenicity and Inheritance
Mitochondria contain their own DNA (mtDNA), which codes for 13 proteins (all subunits of the respiratory chain complexes), 22 tRNAs and 2 rRNAs. Several mtDNA point mutations as well as deletions have been shown to be causative in well-defined mitochondrial disorders. A mixture of mutated and wild type mtDNA (heteroplasmy) is found in most of these disorders. Inheritance of mtDNA is maternal, a...
متن کاملP167: Effect of Mitochondrial Mutation on Depression and Anxiety
Mitochondria are membrane-enclosed organelle found in most eukaryotic cells, which known as power house in cells. This organelle transforms energy into forms that are usable by the cell. The most common psychiatric disorders such as depression and anxiety can be linked to mitochondrial disorders. Furthermore, mutations of mitochondrial or nuclear DNA (mtDNA and nDNA, respectively) have been lin...
متن کاملMitochondrial Genetic Variation in Iranian Infertile Men with Varicocele
Objective Several recent studies have shown that mitochondrial DNA mutations lead to major disabilities and premature death in carriers. More than 150 mutations in human mitochondrial DNA (mtDNA) genes have been associated with a wide spectrum of disorders. Varicocele, one of the causes of infertility in men wherein abnormal inflexion and distension of veins of the pampiniform plexus is observe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 48 4 شماره
صفحات -
تاریخ انتشار 2009